UCLouvain



# Accelerating the Design of Battery Materials by High-Throughput ab initio Calculations and Machine Learning

David Waroquiers & Gian-Marco Rignanese

M ERA NET 3: international matchmaking event on battery materials 28 April 2021

How can one find materials with targeted properties in the information age?



good battery material

**Google Search** 

I'm Feeling Lucky

### Materials properties are not known very well... The typical coverage is below 1 %

| 1 |                   | 14<br>14 |     | 210        | <b>1</b> 29 | D. |     |    | ie  | Г  |
|---|-------------------|----------|-----|------------|-------------|----|-----|----|-----|----|
| ; | 8                 | <b>*</b> |     | 10         | н           |    | E1. | a  | Ø   |    |
|   |                   | <b>`</b> | 175 | đ          | The         |    | F Ø | TT | 221 |    |
| I |                   |          |     | 2          | 0           | •  | •   |    | 2   | 20 |
|   |                   | P        |     | <b>N</b> . | 3           | Лa | •   | 8  | 3   | æ  |
|   | <b>Z</b> <u>P</u> | 4        |     | <b>*</b>   | 2           | p  |     |    |     |    |

#### Experimental materials design often proceeds by trial and error



## High-throughput ab initio materials design

Consider as many compounds as possible, typically  $O(10^3) \rightarrow O(10^5)$ 



 $0(10^1) \rightarrow 0(10^2)$  compounds

#### Many materials DBs have become available online which can be queried with the same API



#### Predicting different properties requires very different computing time



4.7 million properties; 57 million CPU hours; 730,000 calculations...

### This is where the power of machine learning has become very handy



## Modelling battery materials: The example of solid-state electrolytes



#### Ab initio molecular dynamics can be used to study the diffusion of Li in the bulk







New high-conductive battery material predicted and then synthesized.

G. Hautier and co-workers, Chem, 5, 2450 (2019).

### Machine-le simulat

EMISTRY OF

#### CHEMISTRY OF MATERIALS Te realistic and comple

Lithium Ion Conduction in Cathode Coating Materials from On-the-Fly Machine Learning Chuhong Wang, Koutarou Aoyagi, Pandu Wisesa, and Tim Mueller\*

Cite This: Chem. Mater. 2020, 32, 3741–3752



### Machine learning can also be used to predict diffusion energy barriers directly

- Linear Regression
- **Random Forest**
- **MEGNet**
- **MODNet**

5

3

machine-learned energy barrier (eV)

Automatminer

Linear Regression

2



#### HT ab initio computing and ML can help discover battery materials with specific properties



#### A few references



# ΤΟΥΟΤΑ

RICHEMONT

#### David WAROQUIERS Chief Executive Officer

Guido PETRETTO Chief Technology Officer



Geoffroy HAUTIER Chief Scientific Officer Gian-Marco RIGNANESE Chief Innovation Officer